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Abstract. We propose a new class of coupled equations for describing interfacial growth by
molecular beam epitaxy and, additionally, present samaitio electronic structure calculations

for energetics in support of our equations. Finally, we present our results for the critical spatial
() and temporai8) roughening exponents for our model and analyse our results in the context of
atomic interfaces.

1. Introduction

The study of kinetic growth equations [1] and their relevance to real experimental deposition
techniques has become a challenging and fascinating topic. Such deposition processes are
particularly important for the understanding of physical properties of the resulting surfaces.
This is vital for technological reasons. In this communication we modify a class of coupled
stochastic differential equations suggested earlier by Meh&d[2, 3] for driven sandpiles,
and study them as models for surface epitaxial growth of metals on metallic substrates.
While non-equilibrium growth has been extensively studied by means of coarse-grained
classical stochastic equations (see [1]), itis not obvagusori that the microscopic constraints
relevant to atomic surfaces would automatically be satisfied by largely heuristic classical terms.
In this communication we therefore present electronic energy calculations in support of our
model.
The plan of this paper is as follows:

(i) First, we shall adopt ideas introduced earlier in the field of granular media and modify
them to model atomistic deposition processes. We shall therefore qualitatively justify
each term in our deposition equations.

(il) Second, we shall numerically solve the equations for model situations to study the
morphology of the rough surfaces which result from them. We shall vary parameters
in our model equations to see their effect on the resulting surfaces and observe whether
the results tally with the qualitative ideas put forward earlier.
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(iii) Finally, we shall carry out first-principles electronic structure calculations on a specific
example: deposition of bcc Fe on the (100) surface of fcc Ag, using the tight-binding
linearized muffin-tin orbitals recursion (TB-LMTO recursion) and the orbital peeling
method to study the local chemical potentials on arough surface produced by the deposition
equations, and attempt to justify some of the basic assumptions behind the model.

In the so-calledirst-principlesmolecular dynamics [4] in vogue these days, the motion
of the constituent atoms or groups of atoms is usually considered to be classical. Quantum
mechanics plays the pivotal role in determining the force between them; in a metal, this force
is provided by the valence electron cloud. Our approach in the following calculations will
be similar. The actual growth of the atomic surface will be determined classicaillythe
solution of the coupled continuum equations that we will present; on the other trend,
chemical potential will be generated by quantum electronic energy calculations

2. The non-linear coupled continuum equations

Among various physical processes which have been taken into account in models of growing
interfaces surface diffusiorhas been considered as the most important process involved in
surface growth. One such equation is the linear fourth-order Mullins—Herring continuum
equation [5] supported by the discrete model of Wolf and Villain (WV) [6]:

dh(x, 1)/0t = —Dj, Vh(x, 1) + n(x, t) (1)

whereh(z, t) is the height of the interface measured from some mean héight ¢)) and
n(x, tr) represents Gaussian white noise as usual. This equation yields a large roughness
exponeny = 1.5 ford = 1, whered is the dimension of the substrate.

Although there have been a number of non-linear equations which add to this simple
linear description [7] of epitaxial surface growth, there have been rather few attempts so far
that look separately at the roles of relatively immobile atoms which are bonded to the surface
(forming clusters) and the cloud of mobile atoms above the surface. The latter arise both from
the impinging atomic beam and from evaporation caused by atoms knocked out of the surface
by thermal or mechanical disturbances. These are described by their local ggasity.

We propose a new class of growth equations with an explicit coupling between the profile of
‘bonded’ atoms represented by the local height of the surigeer), and ‘mobile’ atoms on
the surface represented by their local dengity, ). Our equations read

dh)dt = —Dy V*h — T + (. 1) 2)

dp/dt = D, V?p+T (3)
where the transfer term is given by

T = (v—p)|Vhl|. (4)

Earlier work of Barabasi [8] also made use of the formalism of coupled equations; this
however, merely made use of gradient expansions of the sort that have been familiar since the
work of Kardaret al[9]. Where our work hits novel ground is in its introduction of coupling
terms from a phenomenological viewpoint, as a result of which its consequences are rather
more physical. In particular, even at the formal level, Barabasi was unable to obtain a crossover
to another universality class, keeping to what he termed the superdiffusive regime, whereas in
all of our work, interesting crossovers have been observed.

We describe in what follows the meaning of the above terms. In items (i) and (ii), we
describe those terms which are specific to a single species, whereas in items (iii) and (iv) we
describe the coupling terms included in the transfer t&érm
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(i) The fourth-order term in equation (2) describes surface diffusion of bonded atoms; this is
the usual WV [6] term wher®),, represents a diffusivity. The particle current leading to
this termis the gradient of the local chemical potential, which is assumed to be proportional
to the local curvature.

(ii) The unattached, flowing atoms are neither bonded to one another nor to atoms on the
surface. The first term in equation (3) hence describes normal, as opposed to surface,
diffusion of the mobile atoms, where the corresponding current is the gradient of the
density.

(iii) The first term in the transfer terr, equation (4), describes spontaneous generation of
mobile atoms on the surface@raporation This could be due to ‘vibration’ caused by, for
example, thermal disturbances. We have assumed that it is easier thermally to eject atoms
bonded at high slopes on the clusterghen is a measure of the substrate temperature.

(iv) The second term ir¥, equation (4), representondensationwhereby mobile atoms
accumulate and accrete preferentially at points of high slope.

(v) Finally the lasttermin equation (2) is a Gaussian white noise characterized by itswyidth

(e, (', 1)) = A28(x — 2)8(t —1').

We assume that growth occurs on a flat substrate; this and the absence of a preferred
direction causes us to consider always the absolute values of the slope in the above equations.
We emphasize that our modelling in the above equations represents the well-known physics of
molecular beam epitaxially (MBE) grown surfaces siaface diffusiomf interfacially bonded
atomsordinary diffusionof mobile atoms above the interface, and the interconversion of one
species into the other vievaporationandcondensatiofl1].

We can visualize the following sequence of processes: first, the mobile atoms diffuse
(V?p) in the cloud above the surface. This is followed by the preferential conversion of these
atoms into the bonded species at points of high slpp€ f|) on the surface such as mounds and
grooves. The term| V| models the effect of evaporation, leading to a dynamical exchange
at regions of high slope between bonded and unbonded atoms.

molecular beam

mound

evaporation

. v\\> .. high slope yndenbatiml

condensation

Figure 1. A schematic diagram of various features of our model
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However, the action of th€“/ term is to stabilize the formation of mounds and grooves,
so ultimately the overwhelming effect is a roughening of the surface. Figure 1 illustrates the
effect of the terms in our model.

3. A model example and its rough surfaces

We have simulated the above equationd i d’+1 dimensions, withi” = 1 whered’ is the
substrate dimension, in order to study the morphology of the resulting rough surfaces. We
have chosen scales such that the diffusion consiantnd D, are taken to be 1. The noise
amplitudeA,, is taken to be 10°. We have varied the parametiebetween 10° and 0.01.

In figure 2 we have shown a portion of the rough surface layer produced at different time
steps. Onthe left, the surfaces are shown to scale. We note that the surface width increases with
time. The panel on the right shows the same surfaces scaled dewih<oh < 1 in order to
bring out the detailed features. We note that with increasing time steps, the short-length-scale
features slowly disappear, and mounds and grooves spanning larger lengths are formed.

of .

t=10"5

h(x,t)
h(x,t)

t=10M

Figure 2. A part of the rough surface produced at different times 10*, 1¢° and 16 time steps:
(left) shown to scale, and (right) scaled+d < h < 1 to bring out the details. Heneis taken as
0.01 andkr is scaled to the ranged x < 1.

Figure 3 shows a similar profile for the densjty Very similar statements may be made
about these profiles. It is interesting to compare the profiles arfid p at large times. In
the h-profile, the local curvature is concave with respect to the substrate near the tops of the
mounds, implying that the local coordination of bonded atoms is small. Moreover the local
slopes here are also large. Atoms in these regions are very loosely bonded and, according to our
model, are the ones which most easily evaporate. In these regions we expect the local density
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Figure 3. A part of the rough density profile produced at different times10*, 10° and 16 time
steps: (left) shown to scale, and (right) scaled-tb < p < 1 to bring out the details. Heneis
taken as 0.01 andis scaled to the rangeg x < 1.

of mobile atoms (formed from evaporation) to be large. This is indeed seen in the density
profile of p. Similarly, within grooves, where the local curvature is convex with respect to the
substrate and the local coordination of bonded atoms is large, it is more difficult to knock off
atoms by evaporation. Here we expect the local density of mobile atoms to be smaller, which
is indeed what we observe. In our model, there should thus be a pdsitakcorrelation
between the height and density profiles.

This correlation can be measured by the standard correlation coefficient defined as

cov(h(r,t), p(r + R, 1))
r(R) = 72
[var(h(r, t)) var(p(r + R, 1))]

where

cov(x, y) = (xy) — (x)(y)
var(x) = (x2) — (x)2.
Figure 4 shows the correlation coefficient as a function of distahc&or comparison
with figures 2 and 3 we note the following: the rangexaghown in figures 2 and 3 has been
scaled to 0< x < 1. Infigure 4,R is shown in the same units. We note that as longas
is small, the correlation function is nearly 1, showing that the height and densities at nearby
points are strongly positively correlated. The correlation drops sharply to z& naseases.
The correlation virtually vanishes f@ > 0.1 units.
Figure 5 shows the height profile at long times:- 10° for v = 0.01 (top) and> = 10°°
(bottom). An investigation of this figure shows that a langbas the overall effect of removing
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Figure 4. The correlation

function of the height and density

profiles at large time = 10,

0.001 : : L : plotted against distancg; both

0.01 R 0.1 axes are logarithmicy is taken
to be 0.01.

h(x.t)

h(x.t)

Figure 5. A plot of h(x, r) againstx for

| | | v = 1078 (bottom) andv = 0.01 (top).
h(x, 1) has been scaled to vary between 0

and 1 to facilitate a qualitative comparison.

o
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local jaggedness; also, the larger the value ofhe earlier this effect appears. We explain
this as follows: the termp|Vi| has a roughening effect, since the accretion it generates is
non-uniform depending, as it does, on tleeal densityp (x, t). On the other hand, the term
v|Vh| generates a purely slope-dependent evaporation, which is asymptotically dominant and
smoothing in its effect. Thus largershould indeed generate a smoother profile,iim accord

with earlier work [2].

A more detailed description of the morphologies of the profiles can be obtained if we
extract the critical roughening exponentnd . The critical exponents characterizing the
temporal and spatial scaling behaviour of a rough surface can be obtained from the (connected)
two-point correlation function:

Sx —x',t — 1) = (h(x, ) (X', 1)) — (h(x, D)) (h(x, 1)).

Figure 6 shows the behaviour of the correlation funcfg® = x — x’,r — ¢t = 0) for
the height profile at three different time steps. As expected, the correlation length does indeed
increase with time.

10 ¢ | -
| | (©) .
S
€ olf |
[} ‘ :
‘ (B)
0.01 | o o
| (A)
0.001 . o . o
1 " 100

R

Figure 6. The correlation functiors (R, 0) versusR for the height profile at three different times
t = 10* (curve A), 16 (curve B) and 18 (curve C) steps (bottom to top).

The single Fourier transforms of the correlation functiSiys, ¢t — ¢ = 0) andS(x —x’ =
0, w) define the two exponentsandg via the relations

S(k,0) ~ k=172
S0, w) ~ 0 7%,
A one-dimensional lattice was used in our simulations, with periodic boundary conditions.
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Figure 7. The Fourier transforms of the correlation functidh&, 0) (top) andS(0, ») (bottom)
for the height profile. Opposite: the Fourier transforms of the correlation funcsign®) (top)
andS (0, w) (bottom) for the density profile. The graphs are shown as log—log plots.

Finite-size checks were also carried out, in order to eliminate spurious effects arising from this
in the determination of our critical exponents.

Figure 7 shows the results of our simulations via graphs of the dependeisce, &
versusk andS(0, w) versusw, for each of the specidsandp.
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Figure 7. (Continued)

Our results are:

(@) @, = 1.61£0.02, B, = 0.39+ 0.02;
(b) o, = 1.325- 0.025, 8, = 0.465 0.01.

The exponents fak indicate that the dynamical exponent is givenzhy~ 4, consistent
with most models for MBE growth [1], and indicating that the fourth-order term plays a
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dominant role in the dynamics, as it should. However, the valueg, @§ greater, even given
the error bars, than the pure WV value of 1.5; this suggests that the additional roughening is
caused by the transfer term which is therefore relevant in the renormalization-group sense.

The role of the transfer term is even more obvious in the critical exponentsgowhere
we getsuper-rougheningn the mobile atoms. It is obvious that this can only arise from the
transfer term, since without this one would have got purely diffusive exponepts-(0.5,

B, = 0.25) pertaining to the linear equation. The physics of this is as follows: the action of
the V4h term is to build up mounds and grooves on the bonded interface, as is well known.
These then provide excellent sources of mobile atoms, because of the actionvpVire

term, in dislodging atoms from regions of high slope such as mounds and grooves. This
preferential generatiorof mobile atoms in certain regions of the interface is what causes
the excess roughening of theprofile, as manifested by the large exponentsdfprand g,
compared to a simpl€?p diffusive growth.

Before turning to the justification of our basic assumptions in the model, we have simulated
profiles on a two-dimensional substrate with the same parameters as for our earlier model and
v = 0.01. We have simulated the height profile both from the KPZ [9] model and our coupled
equations. Figure 8 shows the KPZ profile in the top panel and the profile from our equations
in the bottom panel. Both are for= 10%; we note that the two profiles are very different in
structure. Our profile is far smoother, in accord with the above discussion.

The reason that we have explicitly shown features evolving with time and at reasonably
short timescales as well as local features (at short length scales) is that for most real deposited
surfaces and overlayers, ‘universal’ behaviour is often irrelevant because asymptotic times and
lengths are never reached in experiments.

We emphasize again that the values of the critical exponents above are those that would be
obtainedn the limit of infinitely long times and in infinitely large systemvkich would not be
realizable in typical experimental conditions. However, along the lines of earlier theoretical
work (see, for example, Krug [1] or Das Sarmiaal [7]) we nevertheless present our results
as the bona fide conclusion of our investigations; and, importamntljke the case for most
theoretical papers, we also add here possible avenues for experimental investigation. In recent
work [10], we have linked the temporal and spatial exponentagasuredjuantities in the
context of an experimental thin film; thus for example, an investigation separately of the diffuse
and non-specular Bragg scattering intensities can be related to these exponents. We refer the
interested reader to that paper.

4. Electronic structure calculations

In this section, we perform electronic structure calculations in support of some of the terms in
equation (2).

First, we examine the teri*4 and ask the question: is the assumption that the local
chemical potential is proportional to the local curvature trivial? In his review article, Krug [1]
implies that the reason for using local curvatures is simply a symmetry argument. However,
he goes on to claim that a more realistic assumption would be to assert that the local chemical
potential is proportional to the local bonding coordination. He obviously does not consider
these two statements to be synonymous. It is important to realize that we are dealing here
with metallic surfaces. Unlike in covalently bonded solids, where bonding can be considered
to be two-by-two and mediated by the shared electron cloud, in a metal the bonding is via an
itinerant electron cloud. It is na priori clear that the chemical potential must depend on
local properties. In other words, it is not trivial to assume that Heine’s ‘black-body theorem’
or equivalently the ‘short-sightedness’ paradigm of Kohn [12] holds for metallically bonded
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Figure 8. Height profiles for the KPZ model (top) and the coupled equations presented here

(bottom).

If the local chemical potential, i.e. the energy required to remove an atom from a

surfaces.

given position on the surface, depends upon the topology over an extended region around it,

then the assumption of proportionality to the local curvature may not be valid. In what follows,

we attempt to justify this commonly made assumption by a detailed first-principles electronic

structure calculation.

We take as our substrate surface a>660 square lattice with the profile of heights

properly reconfigured to get a three

-centred cubic (bcc) overlayer. We use

dimensional body

Hamiltonian parameters relevant to the growth of bcc Fe layers as overlayers on a face-centred

cubic Ag(100) substrate. Since there is a close match between the bcc Fe lattice parameter and

the edge-to-face atomic distance of Ag on the (100) surface,

Fe grows easily and epitaxially

on the Ag(100) surface without much strain. This system has been chosen to facilitate further

work on magnetization at the interface, since interesting magnetic phenomena are known to
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occur [13] when transition metal overlayers grow on noble-metal substrates.

Our procedure is as follows: we first produce rough profileg and p by numerically
solving the coupled equations. The next step is to discretize the continuous vatiahles
For a square lattice this discretization is straightforward. For a bcc lattice the heights can be
thought of as produced by atoms vertically stacked in a edge—body-centre—edge sequence.

Most previous studies [13] on the energetics of surfaces have dealt with smooth surfaces,
where use has been made of translational symmetry along the surface. These have involved
surface Green functiorS (k;, z) in which the Bloch theorem has been invoked parallel to the
surface. In the perpendicular direction, calculations have been carried out in real space.

For a rough surface, however, lattice translation symmetry is lost in all three spatial
directions: perpendicular to the substrate as well as onit. Onsuch surfaces, therefore, the entire
calculation should be carried out in real space. Although a coherent potential approximation
[14] has been suggested in which one models rough surfaces as binary random alloys of
the constituent atoms arempty spherest is doubtful whether homogeneous randomness
(which is the basis of the coherent potential approximation) is suitable for describing the
roughness involved. In a recent communication [15], we have modified the coherent potential
approximation to include the effects of short-ranged ordering in surface layers. However, in
all such alloy-analogy approaches, there is a basic underlying assumption of homogeneity
which may not be appropriate for the systems considered here, since the formation of islands
and clusters on epitaxially generated surfaces suggests that the randomness in these systems
is highly inhomogeneous.

The recursion method of Haydoei al [16], however, does not require any assumption
of homogeneity in the Hamiltonian. We suggest here the use of the recursion method. The
feasible application of recursion requires a basis in which the Hamiltonian is sparse. The self-
consistent tight-binding linearized muffin-tin orbitals (TB-LMTO) method based on the local
spin-density approximation (LSDA) [17] provides exactly such a first-principles approach.
The accuracy in energy obtained by the TB-LMTO method is of the order of 50 mRyd/atom.
This is essential, since the chemical potentials are of the order of rydbergs, so our errors must
be at least an order of magnitude less than those. In fact, in a recent communication Ghosh
et al[18] have shown that the error in the recursion method is controllable, and have proposed
an implementation of recursion where the error is always kept within a preassigned energy
window.

The total energy per atom of the system is of the order of thousands of rydbergs, whereas
the energy difference corresponding to the chemical potential (the energy difference between
that of the system with a tracer atom bonded in a given configuration, and that with the tracer
atom removed) is only a few rydbergs. The accurate estimation of such small differences of
large numbers requires special numerical techniques. The orbital peeling method of Burke [19],
which is closely related to the recursion method, provides us with just such a technique. This
measures the energy barrjeithat the tracer atom has to overcome by breaking its chemical
bonding to neighbouring atoms before it diffuses.

The input potential parameters for the TB-LMTO Hamiltonian were first prepared by a
supercell calculation. The unit cell was chosen to have three bcc Fe layers over nine Ag layers
with three empty-sphere layers on top, in a tetragonal structure elongated in the (100) direction.
In the supercell the overlayer is not rough. However, we use these Hamiltonian parameters as
the starting pointof our LSDA self-consistent recursion calculation for the rough overlayer
covered with empty spheres carrying the spilled charge at the surface. The termination scheme
of Luchini and Nex was used [20]. The charge density was generated from the local density of
states and the LSDA potentials generated from them. This self-consistent potential included,
in its Madelung part, the multipole contributions up to the dipole component of the surface
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charge density as suggested by Kudrngvskal [14].

The top panel in figure 9 shows the contour plot of this energy difference, delineated on
the substrate. The tracer atom is placed on the top of the overlayer of héighj at various
pointsz on the substrate. The bottom panel in figure 9 shows the corresponding contours of
the local curvature at the tracer sites. The curvature is obtained from the nearest-neighbour
configuration and is thus proportional to the coordination of the tracer atom. The figure clearly
shows thajs o« V2, leading to a current = V(V2h) which is the basis of th&*# diffusive
term in equation (2). The above justifies the assumption of Wolf and Villain [6, 11] that the
local chemical potential is proportional to the local coordination for the metallic interfaces
considered here. Our results also illustrate that the energetics in metallic interfaces have the
‘short-sightedness’ or local behaviour proposed by Heine [12].

We have also investigated the energetics resulting upon the variation of local slope
|h(z +1) — h(x — 1)|, in support of thev| V|, or evaporationterm. The results (table 1)

40
35
30
25 y
20
15

10

40
35
30
25 y
20
15

10

10 15 20 25 30 35 40

Figure 9. Top panel: a contour plot of the local chemical potential at different points on the
overlayer on the planar substrate. Bottom panel: contour plots of the local curvature at the same
points as in the top panel.
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Table 1. The energyA E required to remove a tracer atom from the interface as a function of the
local slope magnitude&7h|.

IVh|  AE (Ryd)

1 1.27
2 1.19
4 1.16

show that as the magnitude of the local slo¥& | around any given site increases, the energy
AE required to break the chemical bonds of a tracer atom decreases.

Each entry in the first column in table 1 is proportional to the magnitude of the slope at a
site, and each entry in the second column gives the energy in rydbergs required to dislodge a
tracer atom at that site. This verifies our contention that atoms sited in regions of high slope
are relatively more unstable against the formation of the mobile species due to external thermal
or mechanical disturbances, compared to those in regions of low slope. Lastly, we mention
that a similar calculation in support of tlrendensatiorterm p| V| is outside the scope of
our present work, as it would require a dynamical analogue of the above energetics. Such
calculations have been done in a different context using kinetic Monte Carlo [21] schemes. A
full-fledged LSDA-based kinetic Monte Carlo calculation is in progress towards this end.
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